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MODELING MALARIA PATHOGENESIS

Biological Background and Motivating Questions:

Malaria, though widespread, is a disease that is still not widely understood.  It is 

known, however, that the strain of malaria Plasmodium falciparum is more deadly and 

debilitating than the strain Plasmodium vivax.  Many biologists and even mathematicians 

have tried to explain this by arguing that anemia and sequestration in falciparum account 

for this difference, but their hypotheses have proven faulty.  Therefore our team set out to

develop a model that would be more accurate to the biology of malaria, and we used a 

paper by Clark at al. as our basis which details the following parasitology of the disease.

The disease malaria begins when malarial glycosylphosphatidylinositols (GPIs) 

infect the body.  The body responds by releasing proinflammatory cytokines such as 

tumor necrosis factor (TNF).  This inflammatory response also generates oxygen-derived 

free radicals, which help to clear the parasites that are infecting the red blood cells.  TNF 

also activates inducible nitric oxide synthase (iNOS), which generates nitric oxide (NO).  

NO helps to quell the inflammation so the inflammation doesn't get out of control.  In this

way, NO helps to combat malaria.  However, NO also helps malaria because NO 

produces peroxynitrite, which nicks DNA.  Cells then use poly (ADP-Ribose) 

polymerase family member 1 (PARP-1) to repair the damage.  To fix the DNA, PARP-1 

uses NAD+ in such a way that in order for the body to replace the NAD+, the body has to 

undergo ATP hydrolysis.  When NO is great enough, PARP-1 depletes NAD+ so much 

that the membrane-bound NA+/K+ APTase pump fails to operate properly.  This failure 



causes the cells to swell greatly and ultimately to get cleared by the spleen.  This anemia 

serves to further deplete the cells of ATP.  The ionic problems that occur due to the 

failure of the ATPase pump also erode muscle contractility so much that CO2 can not be 

blown out of the cells.  This further acidifies the blood, hurting its oxygen-carrying 

capabilities even more, and only further increasing anemia.  In this way, the downward 

spiral of the disease continues.

Clark et al.’s model also includes many more details about malaria, which is very 

interesting to study because of this issue that the elements in the body that fight the 

disease also contribute to the infection.  In fact, it is often the immune response and 

not the parasite that actually kills the infected person.  This implies that sometimes the 

mechanisms of the disease should be ultimately helpful and sometimes they should be 

ultimately harmful to the body.  Our group decided to focus on one aspect of Clark et 

al.’s model, the nitric oxide loop, because the biology detailed by Clark et al. is very 

complicated and the nitric oxide loop is a prime example of the both the positive and 

negative effects of the body’s reaction to malaria.  We want to study the instances in 

which the mechanisms in Clark et al.’s paper, specifically the nitric oxide loop, lead to 

pathology and the instances in which they lead to lead to clearance of the parasite.  In 

other words, we want to see which will dominate: the therapeutic effects of the 

inflammation or the pathogenic effects of the inflammation.  We can examine this 

dichotomy under the conditions of both vivax and falciparum, too, to look for differences 

in mortality.  I would also like to point out that even though falciparum is more deadly, 

vivax still has devastating consequences because, aside from the fever being very painful,



it causes infected people to miss work and therefore to lose money.  Whole communities 

suffer because people infected by vivax cannot do any work.

As a group project, we are still very much in the preliminary stages, but I still 

have many interesting results to share in this paper.  We have not been able to answer our

preliminary questions yet but we have the proper motivations guiding us.  Eventually we 

hope to better define the boundary between these therapeutic and pathogenic conditions 

and see if we can even make predictions based on our model.

The Model

Our model at this point focuses on Plasmodium falciparum.  We modified a 

model from Anderson, May, and Gupta (1989) which was also used by Iggidr et al. 

(2006).  Our model is as follows:

x’ = Λ – μxx– Βxm – [αjs/(γs+js)]x

y’ = Βxm – μyy – [αjs/(γs+js)]y

m’ = r μyy – μmm – Βxm

f’ = ae-jky(t-τ) – μff

j’ = bf – μjj

Variables are as follows:

VARIABLE DESCRIPTION UNITS

x concentration of healthy red blood cells cells / µL

y concentration of infected red blood cells cells / µL

m concentration of free merozoites cells / µL



f concentration of TNF pM

j concentration of iNOS pM

Parameters are as follows:

VARIABLE DESCRIPTION VALUE UNITS

Λ rate of erythropoesis 26560 cells / (µL*hour)

µx death rate of healthy red
blood cells

0.0083 1 / hour

β contact/infection rate of the
healthy red blood cells by

merozoites

8*10-6 µL / (cells*hour)

α maximum percentage of
RBCs killed via spleen due

to NO-induced ATPase
damage

0.8 1 / hour

s speed at which the
percentage of RBCs removed
by the spleen reaches 100%

2 unitless

γ threshold for dramatic NO-
induced ATPase damage

1 pM

µy death rate of infected red
blood cells

0.025 1 / hour

r average number of free
merozoites released per

bursting infected red blood
cell

24 unitless

µm death rate of free merozoites 60 1 / hours

a default rate of TNF
upregulation

10 (µL*pM) /
(cells*hour)

k rate of TNF downregulation 0.1 1 / pM



due to feedback of NO

τ time delay of TNF effect 2 hour

µf rate of TNF degradation 3.47 1 / hour

b upregulation rate of iNOS
due to  TNF

1 1 / hour

µj rate of iNOS degradation .347 1 / hour

The properties of nonnegativity and boundedness have been proven for all 

variables (see Appendix).  We have also proven that the disease-free equilibrium is 

locally asymptotically stable when the reproductive rate R0
 is greater than one (see 

Appendix).

Our group decided to remove the variable we originally had for NO by using the 

biological assumption that NO has a very short life and we believe the concentration of 

NO is directly related to the concentration of iNOS, which generates NO.  Thus we 

assume that a variable for NO will have the same dynamics as our variable for iNOS, and

the values for NO will be some scalar multiple of our values for iNOS. We don’t believe 

this change will hurt a main purpose of our model, which is to investigate 

specifically both the helpful and the harmful effects of NO.  Another biological 

assumption our model takes is that the iNOS/NO loop is more important than the 

HO-1/CO loop that Clark also mentions.  We believe we can assume this because the 

HO-1/CO loop mimics the iNOS/NO loop, and the iNOS/NO loop has the interesting 

mechanism of specifically being both helpful and harmful to the infected person.



Analysis of the Model

We’ve obtained many results and graphs from our model.  Figure 1 is the graph of

our model for our default parameter values.

Figure 1: Model for Default Parameter Values

Note how in Figure 1 the variables appear to approach a stable value.  We believe this is 

because the beta value, the contact/infection rate, and the tau value, the time delay, are 

small enough that the body can fight off the infection.  

Figure 2 is the graph with all default values except beta increased to 8*10-4:



Figure 2: Model for Default Parameter Values Except β=8*10-4

Note how the variables no longer approach a stable value.  We believe the oscillations are

indicative of a higher infection rate of RBC’s so the body cannot fight off the infection 

and no longer approaches a chronic steady state. The oscillations are well known (as 

falciparum and vivax are tertian periodic and recur about every two days—our time scale 

may be off for now because of the magnitude of the differences in our parameters, which 

will be discussed later) in field research and are supported in the reviewed literature. 

However, we believe that the oscillations that occur by “ramping up” beta are actually 

cause by the time delay tau.  Remember that our default value for tau is 2.  It appears 

from working with the model on MATLAB that the variables never oscillate unless the 



tau value is greater than zero; for example, see the following graph with the beta value at 

8*10-4 (the value for which oscillations occurred with otherwise default values) and the 

tau value at 0.1 (because the lags in the program have to be positive):

Figure 3: Model for Default Parameter Values Except β=8*10-4 and τ=0.1

Even though we believe tau causes the oscillations (because the time delay means the 

body cannot respond to the disease right away and therefore has a harder time clearing it

—in other words, it can never quite “catch up” with clearing the disease), a positive value

of tau alone will not cause oscillations.  If oscillations are to occur, the infection rate beta 

value also has to be high enough; this is because oscillations mean the body is having a 

very difficult time fighting the infection, which only occurs if a time delay exists and the 

contact/infection rate (and thus the burden on the patient) is large enough.  Note the 



following graph that illustrates this principle in which the tau value is four but beta is still

the smaller default value of 8*10-6:

Figure 4: Model for Default Parameter Values Except τ=4

Oscillations do not occur in Figure 4 because even though tau is the fairly high value of 

4, the beta value is not large enough to cause oscillations.

When beta is a high enough value to cause oscillations when the tau value is not 0

(say beta is 8*10-4), then oscillations can occur at low values of tau.  For example, in 

Figure 5 for the beta value at 8*10-4, oscillations first start to appear at the tau value of 

1.75:



Figure 5: Model for Default Parameter Values Except β=8*10-4 and τ=1.75

We’ve also produced bifurcation diagrams for all of the variables versus beta, 

which is obviously a very important parameter since it gives the contact/infection rate. 



Figure 6 gives the bifurcation diagram for beta versus x.



Figure 6: Bifurcation Diagram of β vs. x

Note that x bifurcates when the value of beta is roughly around 2*10-4.  Then the period 

two oscillations observed in the previous diagrams occur, in which x oscillates between 

the values of about 5*104 and 1.5*105 at the beta value of 8*10-4.

As expected, the other bifurcation diagrams also bifurcate when the value of beta 

is roughly around 2*10-4.  Figure 7 gives the bifurcation diagram for beta versus y.

Figure 7: Bifurcation Diagram of β vs. y

The period two oscillations observed in the previous diagrams occur, in which the y value

oscillates between about 0.04 and 0.23 at the beta value of 8*10-4.  Figure 8 gives the 

bifurcation diagram for beta versus m.



Figure 8: Bifurcation Diagram for β vs. m

The period two oscillations observed in the previous diagrams occur, in which the m 

value oscillates between about 1.9*10-4 and 9.2*10-4 at the beta value of 8*10-4.  Figure 9 

gives the bifurcation diagram for beta versus f.



Figure 9: Bifurcation Diagram for β vs. f

The period two oscillations observed in the previous diagrams occur, in which the f value

oscillates between about 0.1 and 0.6 at the beta value of 8*10-4.  Figure 10 gives the 

bifurcation diagram for beta versus j.



Figure 10: Bifurcation Diagram for β vs. j

The period two oscillations observed in the previous diagrams occur, in which the j value 

oscillates between about 0.4 and 1.4 at the beta value of 8*10-4.

Implications of our Findings and Future Work

One of the implications of our bifurcation diagrams is that the disease starts 

getting more out of control for the patient at a beta value of about 2*10-4, because this is 

when the oscillations first start to occur.  These oscillations are confirmed in Figure 11.



Figure 11: Model for Default Values Except β=2*10-4.

Note that the iNOS level, and therefore the NO level, is almost quadrupled from the 

default model in Figure 1 to the model in Figure 11.  The parasite load is also greater on 

average for the patient to handle, so the patient might not survive in the case of Figure 11.

Thus, if the contact/infection rate given by beta could somehow be lowered in patients, 

they would have a better chance of survival.

Another implication of our diagrams is that the Hill function representation of 

anemia, while at first seemingly detrimental, actually helps to clear the parasite and is not

entirely pathological.  Thus sometimes the body is effective at clearing the malaria 

parasite.  However, if the parasite load reaches a certain maximum level or if it remains at

a high period for a long enough time, the patient could die.  In the future we can graph 



the variable (x+y) which is the total count of RBCs and look to see when this value 

becomes less than 40% because this is when a patient would normally die.  We would 

like to examine when mortality occurs in the model to see more in depth how this 

immunopathology is itself therapeutic.

This is not our research level model that we will use when we are working to 

achieve publication.  As has been pointed out to us, the difference between magnitudes in

our parameters is too high, so we must further confirm the values of our parameters.  We 

also plan on making a quasi-steady state assumption to fix this problem.

We also plan on adding a –U(f)y term to the y’ equation and possibly a +U(f)x 

term to the x’ equation to illustrate the therapeutic effect the inflammation response has 

against malaria; we just aren’t sure yet whether or not this therapeutic effect fixes the 

infected red blood cells (making them healthy red blood cells again) or whether it just 

destroys infected red blood cells.

The “double-edged sword” qualities of malaria pathogenesis make it very difficult

to fight by vaccination.  As Clark et al. point out, getting rid of malaria GPIs will 

decrease the burden of the parasite on the patient, but this will also reduce the patient's 

response of fighting the parasite.  We hope that when we work further on our model, if 

we highlight the boundary between the therapeutic and pathogenic effects of the disease 

mechanisms, specifically NO, and if we see how tweaking parameters can lower the 

parasite load, we can shed some light on this issue.
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